Nonlinear sufficient dimension reduction for functional data
نویسندگان
چکیده
منابع مشابه
Series expansion for functional sufficient dimension reduction
Functional data are infinite-dimensional statistical objects which pose significant challenges to both theorists and practitioners. Both parametric and nonparametric regressions have received attention in the functional data analysis literature. However, the former imposes stringent constraints while the latter suffers from logarithmic convergence rates. In this article, we consider two popular...
متن کاملSufficient Dimension Reduction for Longitudinal Data
Correlation structure contains important information about longitudinal data. Existing sufficient dimension reduction approaches assuming independence may lead to substantial loss of efficiency. We apply the quadratic inference function to incorporate the correlation information and apply the transformation method to recover the central subspace. The proposed estimators are shown to be consiste...
متن کاملSufficient Dimension Reduction Summaries
Observational studies assessing causal or non-causal relationships between an explanatory measure and an outcome can be complicated by hosts of confounding measures. Large numbers of confounders can lead to several biases in conventional regression based estimation. Inference is more easily conducted if we reduce the number of confounders to a more manageable number. We discuss use of sufficien...
متن کاملTensor sufficient dimension reduction.
Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we pro...
متن کاملInterpretable dimension reduction for classifying functional data
Classification problems involving a categorical class label Y and a functional predictor X(t) are becoming increasingly common. Since X(t) is infinite dimensional, some form of dimension reduction is essential in these problems. Conventional dimension reduction techniques for functional data usually suffer from one or both of the following problems. First, they do not take the categorical respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2017
ISSN: 0090-5364
DOI: 10.1214/16-aos1475